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A model is constructed of interaction in a quantum mechanical system of two spinless particles. The 
interaction is shown to produce nontrivial scattering. Lorentz symmetry of the model is established by the 
construction of generators of a unitary representation of the inhomogeneous Lorentz group. The total 
momentum and angular momentum operators are the same as for a system of two free particles. This ensures 
familiar transformation properties under space translations and space rotations. The Hamiltonian satisfies 
the asymptotic condition relative to the Hamiltonian for a system of free particles. The use of the asymptotic 
condition is shown to be Lorentz invariant. The scattering amplitude is a manifestly invariant function of 
the particle momentum variables, and can be made to have a variety of analyticity properties by a suitable 
choice of the arbitrary form factors which occur in the model. 

I. INTRODUCTION 

THIS paper was motivated by a recent study of 
special relativistic invariance in Hamiltonian 

particle dynamics.1,2 This study has emphasized two 
distinct aspects of relativistic invariance. The first of 
these is the symmetry of the theory under the inho­
mogeneous Lorentz group, reflecting the principle of 
special relativity that the laws of physics should be 
invariant under transformations of reference frames. 
This symmetry is guaranteed by the existence of ten 
infinitesimal generators 27, P, J, N, for time translations, 
space translations, space rotations, and rotation-free 
Lorentz transformations, respectively, satisfying the 
Lie (Poisson or commutator) bracket equations char­
acteristic of the inhomogeneous Lorentz group.1'3 

The second aspect involves the manifest invariance 
or the explicit transformation properties of specific 
quantities. The philosophy of recent work is to describe 
particle interactions by an S matrix or scattering ampli­
tude. Relativistic invariance is taken to mean that the 
scattering amplitude is a manifestly invariant function 
of the particle momentum variables. 

In this paper we construct a model of interaction in a 
quantum mechanical system of two spinless particles. 
The interaction is shown to produce nontrivial scatter­
ing. Lorentz symmetry of the model is established by 
the construction of ten Hermitian operators H, P, J, N 
which generate a unitary representation of the inho­
mogeneous Lorentz group. The generators P and J 
are just the usual total momentum and angular 
momentum operators for a system of two free particles. 
This ensures that all quantities, for example the particle 
position and momentum variables, will transform in the 
familiar manner under space translations and space 
rotations. The Hamiltonian operator H satisfies the 
asymptotic condition relative to the Hamiltonian 
operator Ho of a system of two free particles. We show 

* Supported in part by the U. S. Atomic Energy Commission. 
1 D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. 

Mod. Phys. 35, 350 (1963). 
2 D. G. Currie, J. Math. Phys. 4,1470 (1963); thesis, University 

of Rochester, 1962 (unpublished). 
3 P. A. M. Dirac, Rev. Mod. Phys. 21. 392 (1949). 

that our use of the asymptotic condition is a Lorentz 
invariant procedure. The scattering amplitude is a 
manifestly invariant function of the particle momentum 
variables. 

Theories of interaction in a quantum mechanical 
syrstem of two particles have been constructed previ­
ously by Bakamjian and Thomas4 and by Foldy.5 

These theories exhibit Lorentz symmetry by the exist­
ence of generators H, P, J, N of a representation of the 
inhomogeneous Lorentz group. But the interaction in 
these theories is described only by the Hamiltonian. 
Our model goes further by providing a solution of the 
scattering problem in which the asymptotic condition is 
satisfied and in which the scattering amplitude is 
manifestly invariant. 

With a suitable choice of the arbitrary form factors 
that occur in our model, the scattering amplitude can 
be made to have a variety of analyticity properties as 
a function of energy or angular momentum. In par­
ticular, causality conditions can be satisfied and Regge 
pole behavior can be produced. Our constructions can 
be used also to make a model field theory with non-
trivial scattering which satisfies all of the usual field 
theory axioms except that it transforms nonlocally. 

To build our model, we define two unitary operators 
0+ and 0_. Then we construct the generators Hy P, J, N 
of the representation of the inhomogeneous Lorentz 
group by using 0+ to make a unitary transformation of 
the generators #o, Po, Jo, No of the representation which 
is characteristic of a system of two free particles. The 
scattering amplitude is easily found because 0+ and 
£2_ are carefully chosen so that they turn out to be 
the wave operators for the scattering problem defined 
by II and i70. Our constructions depend in a funda­
mental way on our use of variables in terms of which 
Ho, Po, Jo, No have the form of a reduction into ir­
reducible representations of the direct product of the 
two single-particle representations of the inhomogene­
ous Lorentz group.6 These variables are introduced in 

4 L. H. Thomas, Phys. Rev. 85, 868 (1952); B. Bakamjian and 
L. H. Thomas, ibid. 92, 1300 (1953); B. Bakamjian, ibid. 121, 
1849 (1961). 

«L. L. Foldy, Phys. Rev. 122, 275 (1961). 
6 A. J. Macfarlane, J. Math. Phys. 4, 490 (1963). We follow the 
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Sec. II. In Sec. I l l we define 0+ and £L and construct 
the generators H, P, J, N. Section IV contains the 
solution for the scattering. In Sec. V we explain the 
Lorentz invariance of our use of the asymptotic condi­
tion. In Sec. VI and VII we conclude with remarks on 
analyticity properties and model nonlocal field theories. 
All of the actual work involved in the construction of 
our model is contained in three appendices. 

In classical mechanics one can describe the motion of 
particles by the time dependence of their positions in 
space. It is natural to postulate, as part of the require­
ment of relativistic invariance, that the time-dependent 
values of the particle position variables transform in the 
familiar manner of space-time events under space 
translations, space rotations, and Lorentz transforma­
tions. This postulate, together with the postulate that 
there exists generators H, P, J, N establishing sym­
metry under the inhomogeneous Lorentz group, has 
been used to prove theorems that there can be no inter­
action in a classical mechanical system of two or three 
spinless particles.1,2*7 

The transformation properties of particle positions 
under space translations and space rotations are as well 
established in quantum mechanics as in classical me­
chanics, but the role of Lorentz transformations of 
particle positions in quantum mechanics is not so clear. 
In quantum mechanics one cannot provide a direct 
physical interpretation for the equations which are the 
analogs of those characteristic of Lorentz transforma­
tions of particle positions in classical mechanics.8 

In this paper we adopt the attitude that one may ignore 
the Lorentz transformation properties of the particle 
positions and require only that the scattering amplitude 
be Lorentz invariant in a quantum-mechanical theory 
of particle dynamics. 

II. LORENTZ SYMMETRY FOR FREE PARTICLES 

We consider a system of two particles with zero spins 
and positive masses mi and m2. We work with operators 
defined on wave functions of the momentum variables 
p1 and p2 for the two particles, the inner product of two 
wave functions / and g being defined by 

(/,«) = [ f(v\p2)*g(v\v2) (1/2^0 (i/2w2)dyd*f, 
J (2.1) 

where (Wtf='{&)*+{mtf and (W2)
2= (p2)2+f>2)2. 

For two free particles we have infinitesimal generators 
Ho} Po, Jo, No for a unitary representation of the in-

notation of this paper. In it the reader will find an extensive list of 
further references. 

7 J. T. Cannon and T. F. Jordan, University of Rochester 
Report NYO-10263 (to be published). 

8 See Ref. 1, especially the last part of Sec. III. However, these 
equations are not without content in quantum mechanics. Their 
consequences for a single free particle with spin have been in­
vestigated by T. F. Jordan and N. Mukunda, University of 
Rochester Report NYO-10270 (to be published). 

t homogeneous Lorentz group in the canonical forms6 

I m=Wi+Wt, (2.2) 
Po=p1+p2, (2.3) 

, Jo=q1Xp1+q2Xp2, (2.4) 
f No=W1q

1+W2q
2, (2.5) 

f where q1 and q2 are the coordinate operators canonical to 
i p1 and p2 that are denned by the relations 

I (qff)(M = i(d/dpf)f(p\tf) (2.6) 
e for n~ 1,2; j —1,2,3 and for any momentum space wave 
e function/. (We choose units for which h=c=l.) One 

can check that the operators (2.2)— (2.5) are Hermitian 
t with the inner product (2.1) and that they satisfy the 

commutation relations9 characteristic of the inho-
s mogeneous Lorentz group. 

It will be convenient to make a change of variables 
^ from p1 and p2 to M, K, and e, with M the total mass of 

the two-particle system, K the total momentum, and e a 
5 unit vector introduced10 to describe the relative motion 
1 of the particles. (Since e is a unit vector, only its spheri­

cal polar angles are variables and altogether there are 
f six variables as before.) These variables are related to 
. p1 and p2 by the equations6 

; K=PH-P2, 

' Mi={Wx+Wi)
i-Y?, 

' e=q-(7lf+»Vr-W2)-1
?oK, 

\ q=MX-I/2(M){p1-p2-[(OTl
2-OT2

2)/lf2]K}, 

s qa=M\~1ii(M){W1-Wi-[(m1
2-m2

i)/M2'] 

X (Wi+Wz)} , 

X(M) = [Af2- {m^+mtfjjd*- (w!-w2)2]. (2.7) 

We can write the momentum space wave functions as 
functions of K, M, and e. Let us, at the same time, 
make a spherical harmonic decomposition in the angles 
of e and write 

/(p1,p2) = 2ilf"2X-1'4(M)Z fim(M,K)Ylm(e), (2.8) 
lm 

[where it is to be understood that the summation is from 
/ = 0 to infinity, m—~l to Z, and that F*m(e) is the 
spherical harmonic function of the spherical polar angles 
of the unit vector e ] . Each state vector / can be repre­
sented either by the wave function /(px,p2) or by the 
sequence of functions fim(M,K). For functions /(p*,p2) 
we have the inner product (2.1) which for functions 
fim(M,K) takes the form6 

J mi-i-mo J * 

Xd'K £ fun(.M,K)*g,m(M,K). (2.9) 
lm 

9 L. L. Foldy, Phys. Rev. 102, 568 (1956). 
10 A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962). 
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In terms of the new variables K, M, and e, the 
operators HQ, P0, JO, No are 6 

(Pof)im(M,K) = Kflm(M,K), 

(2.10) 

(2.11) 

(3of)im(M,K)=-iKXVfim(M,K)+(If)lm(M,K), 
(2.12) 

(N0/)i«(M,K) = i(Jf2+K8)1/2v/Jm(if,K) 
+[M+(M2+K2)1 /2]-1 

KX(I / )^(^ ,K) , (2.13) 

where V is the gradient operator with respect to the K 
variables and 

(Irf)lm(M,K) = m+l)J12 L C(llnrm)ftn(M,K) 
(2.14) 

with C(l\nrm) a Clebsch-Gordan coefficient and with 
r ( = l , 0, —1) referring to a spherical component of I. 
Here, the total angular momentum Jo of the two-
particle system appears as the sum of a term which 
represents the orbital angular momentum arising from 
the motion of the total system and the term I which 
represents the intrinsic angular momentum arising 
from the relative motion of the particles. 

The reader who wants to understand why we choose 
the variables K, M, and e, make the spherical har­
monic decomposition (2.8), and put the operators 
H0, Po, JO, No in the forms (2.10)—(2.13), needs to 
recognize that this is just what is needed to effect a 
decomposition into irreducible representations of the 
representation of the inhomogeneous Lorentz group 
generated by Ho, P0, Jo, N0.

6 In the forms (2.2)— (2.5) 
these operators exhibit the structure of a direct product 
of two irreducible representations with zero spins and 
positive masses mi and m* From the forms (2.10) 
— (2.13) we see that for each fixed / and M the functions 
fim(M,K) form a space which is invariant under Ho, 
Po, Jo, No. On this space these operators generate an 
irreducible representation of the inhomogeneous Lor­
entz group with mass M and spin Z.6 Equations (2.9) 
— (2.13) state how these irreducible representations are 
combined to form a representation appropriate for two 
free spinless particles. 

III. LORENTZ SYMMETRY FOR 
INTERACTING PARTICLES 

At the heart of our model are two operators 0+ and 
12_ which are defined by 

f /M2+K2 \1 /4 

(Sl±f)lm(M,K) = flm(M,K)+ IdM'l ) 
J W ' 2 + K 2 / 

Gi(M)Gi(M') 
X — fun(M',E) (3.1) 

Bi±(M')(M'-M±ie) 

for any sequence of wave functions fim, with 

Bl±(M) = Bl(M±ie), 

Bi(z) 
- / • 

Gi(M¥ 
-AM. 

-M 

(3.2) 

(3.3) 

[It is to be understood that integrations over M and Mf 

variables as in Eqs. (3.1) and (3.3), are to be from 
mi+m2 to infinity. Quantities such as in Eqs. (3.1) 
and (3.2) which contain an e are to be taken in the 
limit as the positive number e goes to zero.] Our choice 
of the functions Gi is limited only by the requirements 
that they are real and that all the equations in which 
they occur are meaningful. Otherwise the Gi are 
arbitrary. 

In Appendix A it is established that the operators 
S2+ and 1L_ satisfy the equations 

&*%+=&_&_+= 1, 

(3.4) 

(3.5) 

and are therefore unitary operators. [Here, as always, 
we use the inner product (2.1) or (2.9).] 

The generators H, P, J, N of the representation of the 
inhomogeneous Lorentz group are defined in our model 
by 

H=Q+HQQ++, 

P=O+P0124.+ , 

J=£l,Jo&f+, 

N=O+N0O++, (3.6) 

where H0, P0, Jo, No are the generators (2.2)—(2.5) or 
(2.10)-(2.13) for a system of two free particles. Since 
Ho, Po, Jo, No are Hermitian and Q+ is unitary, H, P, J, 
N are Hermitian [in the inner product (2.1) or (2.9)]. 
The unitary property of ft+ also ensures that the 
operators H, P, J, N satisfy the same commutation rela­
tions characteristic of the inhomogeneous Lorentz group 
as are satisfied by H0, P0, Jo, No. The Lorentz symmetry 
of our model is established by the unitary representa­
tion of the inhomogeneous Lorentz group generated by 
H, P, J, N.1 

In Appendix B it is shown that 

P=Po, 

J = Jo, 

(Hf)lm(M,K)=(H0f)im(M,K) 

/ilfH-lPV'* 
- ) Gi{M)Gl{M') 

:v 

(3.7) 

(3.8) 

(3.9) 

+ \ dM'i -
J \l KM'2+KV 

X ll+Fi(K\M ,M')lfim(M',K), (3.10) 

where Fi(K2,M,M') is a function which depends on the 
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function Gi(M). The term containing Fi(J&,M,M') 
represents a "relativistic correction" to the Hamil-
tonian H which otherwise appears as the sum of the 
free-particle Hamiltonian Ho and a separable potential 
operator. 

By applying the unitary transformation 12+ to the 
free-particle Hamiltonian Ho, we have constructed a 
Hamiltonian H which contains an interaction term. We 
maintain the Lorentz symmetry of the theory by apply­
ing the same unitary transformation to Po, Jo, No to 
produce a complete set of generators H, P, J, N for a 
unitary representation of the inhomogeneous Lorentz 
group. The fact that P and J are the same as Po and J0 

means that all quantities, for example the particle 
momentum operators p1 and p2, will transform under 
space translations and rotations just as they do in a 
theory of free particles. Of course N is not the same as 
N0. 

IV. SCATTERING 

We now show that the interaction introduced in the 
preceding section produces nontrivial scattering in the 
two-particle system and that the scattering amplitude 
is a manifestly invariant function. 

We have already remarked that the Hamiltonian 
operator II has the form of the free-particle Hamil­
tonian Ho plus a separable potential operator. Our 
construction of this model has been guided by knowl­
edge of solutions of scattering problems with a separable 
potential.11 In fact the solution has been built into the 
model. For Q± are the wave operators for the scattering 
problem defined by H and Ho.12 This follows from three 
facts that are proved in the appendices. The first, 
which we have already noted in Eqs. (3.4) and (3.5), is 
that Q± are unitary operators. The second is a combi­
nation of the unitarity of Q±} the definition (3.6) of 
H, and Eq. (3.9), which we state as 

Hfl^&fcffo, (4.1) 

The third, which is proved in Appendix C, is that 

lim eiHQtQ±e-iHQt^l. (4.2) 

These can be taken as the defining properties of the 
wave operators for scattering by the Hamiltonian II 
relative to the free Hamiltonian Ho.12 

The asymptotic condition is satisfied by our model; 
from the three properties of 12± stated above, one can 
show that12 

&t= lim eiHte-iHot. (4.3) 

11 E. C. G. Sudarshan, 1961 Brandeis Summer Institute Lectures 
in Theoretical Physics (W. A. Benjamin, Inc., New York, 1962). 

12 J. M. lauch and F. Rohrlich, Theory of Photons and Electrons 
(Addison-Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1955), Chap. 7; J. M. Jauch, Helv. Phys. Acta 31, 127 
and 661 (1958); T. F. Jordan, J. Math. Phys. 3, 414 and 429 
(1962). 

It also follows that the Hamiltonian operator H has no 
bound states. For the ranges of the operators (4.3) are 
known to be contained in the subspace of continuum 
"eigenstates" of H12. But we know that every state is 
contained in the range of each of the operators Q± 

because Q± are unitary. 
The scattering operator S is defined by12 

S=ttJ-Q+, (4.4) 

By using Eq. (4.1) and the adjoint of Eq. (4.3) we find 
that 

S=\imeiH«te-imQ+ 
t~*O0 

= limeiHottt±e~iH(}t. 
f—»O0 

(4.5) 

One can use either Eq. (4.4) or Eq. (4.5) to evaluate the 
5 operator. In Appendix C it is shown that 

BUM) 
(S/) t a(Jf , K ) = — — M J f ,K). 

BUM) 
(4.6) 

Since Bi+(M) is the complex conjugate of Bi^(M), we 
may write 

(Sf)lm(M,K) = e^^\flm(M,K), (4.7) 

where 5z(M) = arg[£z_(Jf)]. 
Two things should be noted. First we see that, in 

general, there will be nontrivial scattering. By choosing 
various functions Gi(M) we can produce various phase 
shifts 81 (M). This can be done independently for each 
/. For example, by choosing Gi to be nonzero only for 
certain values of /, we can produce scattering in those 
partial-wave channels with no scattering in the others. 

We also see that the scattering amplitude is a mani­
festly invariant function. It depends only on the vari­
ables / and M, That these are invariant functions of the 
particle momentum variables p1 and p2 is evident from 
an inspection of the formulas (2.10)-(2.14) for Ho, Po, 
Jo, No. The change of variables (2.7) which was used to 
put Ho, Po, Jo, No in the forms (2.10)-(2.14) is a funda­
mental part of our construction of an invariant scatter­
ing amplitude. The manifest invariance of the scatter­
ing amplitude is invariance under the representation of 
the inhomogeneous Lorentz group generated by Ho, 
Po, Jo, No, not under the representation generated by 
H, P, J, N. This is in accord with the picture of scatter­
ing which supports the asymptotic condition: scatter­
ing is between initial and final states in which the 
particles are free and the scattering amplitude is a func­
tion of the variables describing the initial and final free-
particle motion. 

V. LORENTZ INVARIANCE OF THE WAVE 
OPERATORS AND ASYMPTOTIC 

CONDITION 

We now show that our use of Eq. (4.1), the asymp­
totic condition (4.2), and the wave operators (4.3) is a 



H A M I L T O N I A N M O D E L O F 

Lorentz invariant procedure. Specifically, we show 
that we get the same wave operators 0± if we take the 
limits (4.3) in any Lorentz transformed reference frame, 
and that operators 0± satisfy the asymptotic condition 
(4.2) in any Lorentz transformed reference frame if 
they satisfy it in one frame. We also show that 0± 

satisfy Eq. (4.2) in any Lorentz transformed reference 
frame if they satisfy it in one frame. 

Scattering involves a comparison of the dynamics of a 
system of interacting particles with that of a system of 
free particles.12 In the interacting system the repre­
sentation of the inhomogeneous Lorentz group is 
generated by H, P, J, N. In the free system the repre­
sentation of the inhomogeneous Lorentz group is 
generated by Ho, P0, JO, NO. 

Consider a transformation to a reference frame mov­
ing in the x direction with respect to a given frame with 
a velocity v—t&nha. We may use the "Heisenberg 
picture" to represent this transformation1; operators 
are transformed but state vectors are unchanged. For 
the interacting system 

H -—> H cosha—Pi sinha (5.1) 

and for the free system 

Ho —» Ho cosha—Poi sinha . (5.2) 

Under this transformation the wave operators (4.3) go 
into 

l i m p}m coshftg— IP it s i n h d g i P o i t sinliag—iHot cosha /"CJ ^ \ 

(Here we use the fact that H and P commute with each 
other, as do Ho and Po.) Due to the fact established in 
Appendix B that 

P = P 0 (5.4) 

the operators (5.3) are equal to 

l i m pi^t coshdg—iHot cosha 

which are the same as the operators (4.3). The same 
result holds, of course, for frames moving in the y or z 
direction. Under transformations to frames that are 
rotated in space or translated in space or time with 
respect to the given frame there is no change in H or Ho 
because H commutes with H, P, J, and Ho commutes 
with Ho, Po, Jo. Hence, there is no change in the wave 
operators (4.3). The wave operators (4.3) are thus the 
same in all reference frames which are related by trans­
formations of the inhomogeneous Lorentz group. This 
result depends only on the fact that Eq. (5.4) is satisfied 
in our model. 

Consider again the Lorentz transformation under 
which Ho is transformed according to the relation (5.2). 
The left-hand sides of Eqs. (4.2) go into 

l i m £ > ^ 0 < cosh«g— iPoit s i n h a O ^ t P o i * sinhag—iHot cosha ^ / ^ ^\ 
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Due to the fact established in Appendix B that 

OtPo=i>(At (5.6) 

the operators (5.5) are equal to 

l i m p}H®t coshaQ p—iHot cosha 

which are the same as the left-hand sides of Eqs. (4.2). 
As before, the same result holds for frames moving in 
the y or z direction and holds trivially for frames that 
are rotated in space or translated in space or time. 
Therefore, wave operators fl± satisfying the asymp­
totic condition (4.2) in one reference frame satisfy it in 
any frame that can be reached by a transformation of 
the inhomogeneous Lorentz group. This result depends 
only on the fact that Eq. (5.6) is satisfied in our model. 

Consider once more the Lorentz transformation under 
which H and Ho are transformed according to the rela­
tions (5.1) and (5.2). Equation (4.1) goes into 

(H cosha—Pi sinha)12±=^(Fo cosha—Poi sinha) 

which is valid because of Eq. (4.1) and the equation 

P2±=Q±Po, (5.7) 

which is also established in Appendix B. Once more, the 
same result holds for frames moving in the y or z direc­
tion and holds trivially for frames that are rotated in 
space or translated in space or time. Hence wave 
operators Q± satisfying Eq. (4.1) in one reference frame 
satisfy it in any frame that can be reached by a trans­
formation of the inhomogeneous Lorentz group. This 
result depends only on the fact that Eq. (5.7) is satisfied 
in our model. 

We emphasize that these results depend only on the 
three conditions (5.4), (5.6), and (5.7). These have the 
property that any two of them implies the third. In 
particular, under the condition (5.7) for invariance of 
the equality (4.1), Eqs. (5.4) and (5.6) are equivalent 
conditions for the invariance of our use of the asymp­
totic condition (4.2) or the wave operators (4.3). These 
conditions ensure that the scattering found by compari­
son of the interacting and free systems is independent 
of the frame in which the comparison is made. 

VI. ANALYTICITY PROPERTIES 

From the definitions (3.2) and (3.3) of Bi± there 
follows the relation 

Bl+(M)-Bl^(M) = i2wGl(M)2. (6.1) 

Using this, we can write the S matrix (4.6) in the 
form10'13 

(S/)Zm(M,KH/,w(M,K) 
+2i\v*(M)M-*A z(M)/zm(M,K) (6.2) 

13 For the case of equal mass particles Wi = w2, this agrees with 
G. F. Chew, S-Matrix Theory oj Strong Interactions (W. A. Benja­
min, Inc., New York, 1961), Eq. (9-5). 
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and find that the partial-wave scattering amplitude 
Ai(M)h 

Ai(M) = -X-ll2(M)M27rGl(M)2/Bl+(M). (6.3) 

The purpose of this section is to observe that the 
scattering amplitude can be made to have various 
analyticity properties as a function of complex variables 
/ and M, depending the choice of Gi(M). In general, 
Ai(M) is, of course, not analytic in either / or M. But 
if we choose Gi{M) to be the boundary value, evaluated 
at integral non-negative I and real M>mx-\-m^ of an 
analytic function of two complex variables / and M, 
then the partial-wave scattering amplitude Ai(M) is 
also the boundary value of an analytic function of these 
complex variables. 

For scattering in the center-of-mass frame, in other 
words for a state in which p r = — p2, the variable M is 
just the total energy of the two free particles. (M2 is 
commonly denoted by s.) A "causality" condition can 
be formulated in terms of the analyticity of the scatter­
ing amplitude in the upper half M plane.14 Such a con­
dition can be satisfied by a suitable choice of Gi(M). 
This is not surprising since causality conditions are 
also satisfied by a variety of static nonrelativistic 
potentials. 

In the M2=s plane the partial-wave scattering 
amplitude Ai(M) has an invariable branch cut from 
(wi+w 2 ) 2 to infinity. Any additional left-hand cut 
can be obtained by including it in the analyticity 
properties of Gi(M). 

I t is also possible for Ai{M) to have interesting 
properties as a function of the complex variable I. 
Specific choices of Gi(M) which lead to Regge pole 
behavior have been considered by Acharya.15 

Interest in the possibility of describing a relativistic 
quantum-mechanical system of interacting particles in 
terms of just particle variables has been stimulated by 
recent developments in the theory of strong inter­
actions. Most of this work is aimed at the construc­
tion of an invariant scattering amplitude satisfying the 
principles of unitarity, analyticity, and crossing 
symmetry.16 Despite numerous calculations, no scatter­
ing amplitude satisfying these conditions exactly is 
known. 

The model constructed in the preceding sections 
shows that the requirement of relativistic symmetry is 
not incompatible in a particle theory with an inter­

action which gives nontrivial scattering described by a 
manifestly invariant scattering amplitude. We also see 
that the scattering amplitude can have a variety of 
familiar analyticity properties. Further, our S matrix is 
unitary, which provides a simple illustration of the fact 
that unitarity alone puts no essential constraint on the 
analyticity of the scattering amplitude in either the 
energy or the angular momentum. Finally, while the 
relativistic invariance and unitarity requirements are 
satisfied exactly in our model, it exhibits no crossing 
symmetry. In fact crossing symmetry seems to present 
a nontrivial mathematical problem: to date no non-
trivial exact solution is known for any multichannel 
theory which satisfies crossing symmetry and in which 
channels mix on crossing. 

VII. MODEL FIELD THEORIES 

In the preceding sections we constructed a model of a 
system of two interacting particles by making a unitary 
transformation of a description of two free particles. 
By a simple extension of this technique we can con­
struct a model field theory which gives nontrivial two-
particle scattering with a manifestly invariant scatter­
ing amplitude and which satisfies all of the axioms of 
relativistic quantum field theory except that it does not 
transform locally. One of the authors has outlined this 
construction in some detail.17 We will just summarize 
the recipe: 

Take a free neutral scalar relativistic quantum field 
theory in the Fock representation. Construct the pro­
jection operator to the subspace of two-particle states. 
Make a unitary transformation which is equal to the 
unitary transformation 12+ of the preceding sections on 
the two-particle subspace and which is equal to the 
identity transformation on the orthogonal complement 
of the two-particle subspace. 

The field theory so obtained has a standard particle 
interpretation and gives scattering only in two-particle 
channels. I t contains a unitary representation of the 
inhomogeneous Lorentz group, a unique invariant 
vacuum state, and local commutation relations. I t 
fails to satisfy the usual axioms of relativistic quantum 
field theory only in that the transformation of the fields 
is not a local or point transformation. I t is interesting to 
note that such a violation of the point transformation 
property occurs in the radiation gauge formulation of 
quantum electrodynamics.18 

APPENDIX A 

In this Appendix we prove that the operators 12± are unitary. Our first task is to establish a formula for the adjoint 
operators 0 ±

+ . By definition we have that 
(g,ftfc+/)=(fl^,/)-

14 J. S. Toll, Phys. Rev. 104, 1760 (1956). 
15R. Acharya (to be published); thesis, University of Rochester, 1962 (unpublished). 
it s e e Ref 13. 
17 E. C. G. Sudarshan, J. Math. Phys. 4, 1029 (1963). 
11 E. C. G. Sudarshan, Phys. Rev. 123, 2183 (1961), Appendix. 
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Using the inner product (2.9) and the definition (3.1) of 0±, recognizing that Bt+ and Bi- are complex conjugates 
of each other, and making some changes of variables and order of integration, we develop the above relation as 

[dM ((1/2)(M2+K2)-1/2^3^ Z gim(M,K)*$l±+f)lm{M&)= f dM f (l/2)(iP+¥f)-m^K £ fu»(M,E) 
J J lm J J l™> 

I r rM 2 +Kh" 4 Gt(M)Gi(M') 1 r r 
X gim(M,K)*+ / dM'l gUM',K)* = / dM / ( l /^ikP+K2)-1 '2 

1 J L M ' 2 + K 2 J BtT(M')(M'-M=Fit) I J J 

( r r F + K h 1 ' 4 Gt(M)Gl(M') 1 
X*tf L gUM,K)*\ flm(M,K)- / <*M' — — - — — -JUM',K) , 

im { J l_M'2+K2J Br?(M)(M'-M±ie) I 
from which we deduce that 

f rvtf2+K2-|1/4 Gi(M)Gi(M') 
(0±+/);m(M,K) = flm(M,K)- / dM'l — — —— ftm(M',K). (Al) 

J LM'2+K2J B^{M){M'-M±u) 

Next we establish Eq. (3.4). To do this we just use the formulas (3.1) and (Al) to write 

r r F + K h 1 ' 4 Gl{M)Gi{M') r rilf2+K2-]1/4 

(il±+Qj)lm(M,K) = flm(M,K)+ / dM'l —— ——— -flm(M',K)- dM'l 
J L M ' 2 + K 2 J BI±(M')(M'-M±U) J L M'2+K2J 

X fim(M'K)- 7 dM' 
Gi{M)Gi{M') r rlP+K'-i1'4 Gl(M)Gi{M") 

iM"\ 
LM"2+K2J BiT(M)(M"-A 

rM"2+K2-|1/4 Gi{M")Gi{M') 

Bn(M)(M'-M±ie) J LM"2+K2J BiT(M)(M"-M±it) 

f rM"2+K2-|1/4 diM'^GiiM') 
X / dM'l - — — flm{M',K). (A2) 

J LM'2+K2J B^M'^M'-M'^u) 
Then we use the identity 

£(M"-M±ie)(M'-M"±ie)J-l = l(M'-M±ie)(M"-M±i<:)J-i+l(M'-M±ie)(M'-M"±i6)J-i (A3) 

and the definitions (3.2) and (3.3) of B ( ± to develop the double integral term of Eq. (2) as 

r r F + K 2 ! " 4 Gi(M)Gi(M') r r 1 1 -i 
- / dM'l ftm(M',K)X / dM'^Wyl — 

J L M ' 2 + K 2 J Bn(M)Bl±(M')(M'-M±ie) J L(M"-M±ie) (M"-M'=Fie)J 

r rAP+K*-]1'* Gl(M)G,(M') 
= / dM'l — : jim{M',K)XlBl±(M')-Bv?{M)~]. 

J LM-'2+K2J BlT(M)Bl±(M')(M'-M±ie) V 'A 

From this we see that the double integral term of Eq. (A2) cancels out the two single integral terms leaving us with 

(0±+fi±/)Jm(M,K) = / i ro(M,K), 
which is just Eq. (3.4). 

Finally we establish Eq. (3.5). We need to use the fact that 

Bl+(M)-BUM) = 2iriGl(M)*, (A4) 

which follows from the definitions (3.2) and (3.3) of Bi±. We use the formulas (3.1) and (Al) again to write 

rM2+K2-|1M Gi(M)Gi(M') r r if2+K2n1 / 4 [ r r + i v n " * Gi(M)Gi(,M') r rM2+K2f 
(Q±Q±+f)im(M,K) = f!m(M,K)+ / dM'l flm(M',K)- / dM'l 

J Llf'2+K2J Bl±(M')(M'-M±u) J Llf'2+K2J 

:flm(M',K)- / dM'l -
J I—Zl 

Gi{M)Gi{M') r rilf2+K2-|1/4 G,(Jf)G«(Jf') 
flm(M',K)- / dM'l L_LJ_J 

BlT(M)(M'-M±u) J l_M'2+K2J Bl±{M')(M'-M±U) 
r rATH-**-]"4 Gi{M')Gi{M") 

X / dM"\ — flm(M",K). (A5) 
J LM"2+K2J Bir(M')(M"-M'±u) 
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FIG. 1. The contour C for the integrals (A7) and (B3) is closed by-
adding to it a circle of large radius. 

Using Eq. (A4), we develop the double integral term of Eq. (A5) as 

•fiW 
M2+K2 • 

Llf"2+K2. 

1/4 

where 

/ = / dM'-

Gi(M)Gl(M")fim(M")K)I, 

Cn(Mj 

(A6) 

Bl+(M')Bl„(M')(M'~M±ie)(M"--M,±ie) 

1 r 1 r * 1 

= — / AW 

2wiJ (M'-M±ie)(M"-M,±i6)LBUM') Bi+{M') 

We can write i* as the contour integral 

1 r 1 

/ = — / dz , 
2wiJ c Bi(z)(z-M±ie)(M"-z±ie) 

where C is the contour shown in Fig. 1 which circumscribes the part of the real axis between mi+m2 and infinity. 
The part of the contour below the real axis gives the term with Bt- and the part above the real axis gives the term 
with Bi+. Since Bt(z) approaches 1 as z becomes infinite, the integrand of / is of the order z~2 for large z. Hence we 
can close the contour C by adding to it a circle of large radius (Fig. 1) which contributes nothing to / . Now2?z(z) 
has no zeros within the region enclosed by C, so the only contributions to / are from the poles at M^ie and 
M"±U. These give 

Substituting this into the term (A6), we see that the double integral term of Eq. (A5) cancels the single integral 
terms leaving us with 

(ti±{l±+f)lm(M,K) = flm(MyK), 
which is just Eq. (3.5). 
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APPENDIX B 

In this Appendix we derive the explicit forms of H, P, J and establish Eqs. (3.7)-(3.10). 
First we find H and prove Eqs. (3.9) and (3.10). Using formulas (2.10), (3.1), and (Al), we find that 

(Q±H<&l±+f)im(M,K)= (H0f)UM,K)+ / dM'\ ——— — — - —fim(M',K) 
J Ljtf'2+K2J B^(M')(M'-M±ie) 

r rM2+K2-\l'i(M2+K2yi2Gi(M)Gi(M') r rM2+K2' 
- / dM'\ fUM',*)- / dM'\ • 
J L M ' 2 + K 2 J B~(M)(M'-M±ie) J L .M'2+K2J BlT(M)(M'-M±u) J LM'2+K2. 

M'i+K2)1i2Gi(M)Gi(M') r r^"'2+K2l1/4 Gi(M')Gt(M") 
: X dM"\ Jb 

Bi±(M')(M'-M±U) J LAf"2+K2J BW(M')(M"-M'±ie) 

1/4 

(Bl) 

Using Eq. (A4) and proceeding just as we did with the double integral term of Eq. (AS), we develop the double 
integral term of Eq. (Bl) as 

r M2+K211'4 

• G,(Jf)G,(Jf")/h.(ilf",K)/, (B2) 
-M"2+K2J 

where 
( 2 2 + K 2 ) I / 2 

f r 
- / dM"\ -
] u 

-•[• 
2iriJ c 

/ = — / dz , (B3) 
" " Bi(z)(z-M±ie)(M"-z±ie) 

with C the part of the contour shown in Fig. 1 which circumscribes the part of the real axis between ^1+^2 and 
infinity. As in Appendix A, we close the contour C by adding to it a circle of large radius (Fig. 1). But now the 
integrand of / approaches —z~x as z becomes infinite. Hence the integral around the large circle does not vanish 
but contributes a term — 1 to J. When substituted into the term (B2), the contributions to / from the poles at 
M^fie and M"dzie give terms in the double integral of Eq. (Bl) which cancel the single integral terms, as in 
Appendix A. The only other contribution to / comes from the branch cut for the function (s2+K2)1/2. Since we can 
not evaluate this for arbitrary Gh we simply name it —Fi(K2,M,M"}. Adding this contribution to the contribution 
— 1 from the large circle, substituting in the double integral term (B2) of Eq. (Bl), and remembering that the 
pole contributions have cancelled the single integral terms, we see that Eq. (Bl) becomes identical to Eqs. (3.9) 
and (3.10) with the definition (3.6) of H. 

We could prove Eq. (3.7) by a calculation of the above kind. But it is easier just to see, by inspecting the 
formulas (2.11) and (3.1), that 

(O±P0/WM,K) = K(0±/),M(M,K) = (PolWWM,K). (B4) 

By a similar inspection of the formulas (2.12), (2.14), and (3.1), we can see that 

( 0 ± J o / ) l m ( M , K ) = (Joti±f)lm(M,K) . 

For it is clear that the second term I of J0 commutes with Q± and the fact that 

- iKXVK 2 =0 

makes it evident that the first term does also. 

APPENDIX C 

In this Appendix we prove Eq. (4.2) and (4.6). From the formulas (2.10) and (3.1) we have that 

( ^ « ^ ^ ~ ^ 7 ) ^ ( M , K ) = //m(M,K)+ / dM'\ —j2 ^KM2+K2)1/2-(M/2+K2)1/2^ 

Gi(M)Gl(M
f) 

x fu*(M',K). (CI) 

We use the identity 

1 (M'2+K2)v2- (AP+K2)1'2 r* 
X ( T i ) / eiy t(^/2+K;2)i/2~-(M!M-K2)i/2] 

M'-M±ie M'-ML 
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to write the last term of Eq. (CI) as 

J L M , 2 + K 2 J ;0.-OO 

X ftm (M-flm (M',K) = =Fi / dM'\ 
J Lilf'2+K2J 

[(M,2+Kiy'i-(Mi+Riyi*']Gi(M)Gi(M') 

Bi±(M')(M'-M) J Lilf'2+K2J 

/•"•-« [(AP+K2)1'2- (Mi+K'iyi^i(M)Gi(M') 
X dxe^W+W-W^^X- — fim(M',K). (C2) 

J-t,-„ B^M'XM'-M) 

In the limit as t approaches =F °° this term vanishes, leaving us with Eq. (4.2). 
If, for the case of ft+, we take the limit as t approaches + oo of the term (C2), we get 

r l-AP+K2-]1'4 l(M'2+K2yii-(M2+Kiyi22Gi(M)Gi{M') 
- 2 « / dM'\ 5[(M'2+K2)1 '2- (M2+K2)"2]X fim(M',K) 

J L M ' 2 + K 2 J BUM')(M'-M) 

= -2x» /*m(M,K), 
Bi+(M) 

which is equal, by the identity (A4), to 

BUM)-B^{M) BUM) 
— /h,(Jf,K)=—-—fim(M,K)-f lm(M,K). 

BUM) Bi+(M) 

Substituting this for the last term of Eq. (CI), we have that 

BUM) 

BUM) 

/ \ BUM) 
f lim e^Q+e-^f L(M,K)= fim(M,K), 
\ •— / BUM) 

which is just Eq. (4.6) with S evaluated according to Eq. (4.5). One can obtain Eq. (4.6) also by using the formulas 
(3.1) and (Al) with the definition (4.4) of 5. 


